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INTRODUCTION 

MOISTURE migration in unsaturated porous media has been 
extensively studied by many investigators [l-6]. Many insu- 
lation and structural materials with moisture shields have 
impermeable boundaries. The objective of this work is to 
investigate a methodology to predict the steady-state moist- 
ure profile using the steady-state temperature profile for 
unsaturated porous media with impermeable boundaries. In 
the present analysis the porous medium is assumed to be 
homogeneous, isotropic, and the thermophysical properties 
of the medium are assumed to remain constant. The heat 
transfer in the medium is assumed to be solely due to molec- 
ular conduction and the effect of gravity on the moisture 
migration is neglected. The heat transfer mechanism due to 
phase change of the moisture such as freezing and boiling 
are neglected. The total pressure in the porous medium is 
assumed to be a constant. 

ANALYSIS 

The temperature (7’) and moisture concentration (w) 
fields in an arbitrary three-dimensional unsaturated porous 
medium satisfy the following diffusion equations : 

l?T 
- = uV2T 
ar 

;y = DTV2T+D,VZW. 

Moisture concentration flux (J) is given by 
J = -&VT-D,V W. The above equations (1) and (2) can 
be written in dimensionless forms as 

with 2 = -T on theboundary (4) 

where 

02 = (3’/dxz +a2pP+a2/az2 

The conservation of mass requires that 

J Y,dV= 0 (5) 

due to the nature of the impermeable boundary. The bound- 
ary condition for moisture equation (4) is not homogeneous. 
To simplify the solution process, the boundary condition is 
made homogeneous by introducing the following trans- 
formation : 

Y = YM +y’,. (6) 

Note that function Y has no direct physical meaning but is 
an intermediate mathematical entity to obtain the moisture 
profile. Accordingly, the moisture equation takes the form 

with aY/&r = 0 on the boundary. 

STEADY-STATE PROFILES 

If steady-state moisture and temperature profiles exist for 
a prescribed thermal boundary condition, equations (3) and 
(4) under steady-state conditions reduce to 

V’Y’, =0 and V2Y,., = 0. (7) 

Invoking Green’s theorem 

J (Y’,~‘Y,-Y’,~2Y’,)dV 

= #P,(2)-Y,@)}dS. (8) 

Substituting equation (7) into equation (8) one obtains 

Combining the impermeable boundary condition with the 
above equation, we arrive at 

(9) 
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NOMENCLATURE 

dimensionless lengths in x-, y- and L- 
directions (a> = 1, n, = LJL, and 
4 = -&IL,) 
constant (Y/,) 
thermal mass diffusion coefficient 
[m’s_‘“C-‘1 
moisture mass diffusion coefficient [m’s_ ‘1 
Fourier number, aT/Lz 
moisture concentration flux 
thermal conductivity [w m- ’ “C- ‘1 
lengths in X-, y- and z-directions 
Luikov number, DM/u 
unit outward normal to the surface 
heat Aux [w m- *] 
dimensionless heat flux, LXgO/KT; 
dimensionless surface area of the porous 
medium 

w moisture concentration, plIps 
K initial moisture concentration in the medium 
x,y,= space variables 
X, Y, 2 dimensionless space variables 

(X = x/L,, Y = y/L, and Z = z/L,). 

Greek symbols 
a thermal diffusivity [m’s_ ‘J 
Pi liquid density &g m- “1 
PS dry medium density fkgme3] 

& 
time variable 
yT+yM 

YM dimensionless moisture concentration, 
DM( W- &J/DTAT 

Yf dimensionless temperature, (T- T,)/AT 
Y* asymptote of Y. 

T temperature field 
AT reference temperature difference Other symbols 
T, initial temperature of the porous medium 0 volume average 
zi volume of the porous medium, L,L,L, V2 Laplacian operator 
V dimensionless volume of the porous V Laplacian operator in dimensionless 

medium, a,a,a, coordinates, equation (4). 

Since equation (9) is valid for any arbitrary geometry and 
thermal boundary condition, we finally obtain that 
Yr,, = -YT+ A, where A is a constant. This can be verified 
by back substitution. Using the equation for mass con- 
servation (5), the constant A is identified as 

A=; YY,dV=<YT) 
s 

where (Yu,) represents the volume average of Y,,. From the 
aforementioned discussion we arrive at the following remark. 

The non-dimensional steady-state moisture (Y,) and tem- 
perature (Y,) projles are related by Y, = -Yr+(Y’7), 
irrespective of’ the thermal bo~dary eondjtion~, domain 
geometry, and dimens~onolity of an unsaturated porous 
medium with impermeable boundaries, provided that the 
steady-state temperature profile (Y,) exists. 

This suggests that, if the ultimate or steady-state moisture 
profile is of main concern, one needs only to find the steady- 
state temperature profile, which is a solution to the Laplace 
equation (7). 

DRYOUT IN POROUS MEDIA 

We turn our attention now to the concept of dryout in the 
porous medium, when the moisture profile has reached its 
steady state. The ‘dryout’ region in the porous medium is 
defined as the region where the moisture concentration ( W) 
is zero. 

Combining the outcome of our analysis and the original 
definition, we obtain 

wt.&, = gfp),,- WI) = -v,),,+(w),,> 
T 

or 

(w),, = K- ‘~((Y~)~.~-<~~)~~)). (lOa) 
M 

From this, we define the wet region ( W > 0) as 

DTAT 
w= wi+(2X--1/2)M. 

The wet region is given by equation (lob) as 

1 DM w, 
;i_WT-=. 

If the region defined by equation (lob) occupies the whole 
domain, then there does not exist a dried region. However, 

if this region occupies a partial domain, then an ultimate 
dryout exists in the medium. 

APPLICATIONS 

Consider a one-dimensional porous medium of LX = 
0.5 m at an initial temperature of Ti and an initial mois- 
ture concentration of IV,. 

End walls at uniform temperatures 
In the first application of the analysis, consider the case 

where the left-hand wall is heated to 7O”C, while the right- 
hand wall is maintained at the initial temperature, T, = 20°C. 
The temperature field is obtained from 

aYT a*yr+ lnltlaiand bovndarycondi,ions, -_=_- 
8Fo &Y* 

‘yT4 F0=0 
T,=O, x= I 
VT= 1. x= O@T= 70-20, 

Using the Laplace transform technique, the solution is found 
to be 

YT = ~-~-2~~exp(-m’~~Fo~. 
1 

The steady-state temperature profile becomes 

(YT)ss = 1 -X, with ((YT)s.r) = l/2. 

The present analysis provides the steady-state moisture pro- 
file as 

(Y,),, = -(1--x)+(1-X> = -(l-X)+1/2=X-1/2. 

This also satisfies the mass conservation equation (5). 
Reverting to the dimensional variable X, (X = 2x), equation 
(10a) yields 

The possibility of the existence of a dryout region depends 
on the initial concentration, IV,. The extent of the dryout 
region increases with a decrease in Wi. When the left-hand 
side of the above inequality is set equal to zero, we obtain 
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1. Steady-state moisture profile obtained by Krischer 
and Rohnalter (Fig. 8 of ref. [3]). 

the following upper bound of Wi which can result in an 
ultimate dryout. (Dryout would start from the left-hand wall 
in this example case) 

(12) 

Note that if W, > (W,),,,,,, no dryout is possible. 
The theoretical results obtained in this investigation are 

compared with the experimental data obtained by Krischer 
and Rohnalter (Fig. 8 of ref. [3]) for the same thermal and 
mass boundary conditions. They investigated the steady- 
state moisture profiles for initial concentrations of W, = 10 
and 2.5%. The present results compare very well and are 
shown in Fig. 1. 

End walls at uniform heat&x and uniform temperature 
In this case, the left-hand wall is subjected to a constant 

heat flux, qO, and the right-hand wall is kept at a constant 
temperature, T. The governing equation for the temperature 
field and the associated boundary conditions are 

w,,ar= -qo.X~O(AT=r,, 

Using the Laplace transform technique, the solution is found 
to be 

x exp[-(n-l/2)2n2Fo]. 

The steady-state temperature profile is 

(‘u,),, = &(l -Q. 

The steady-state moisture profile then is given by 

(Yu,),, = -400 -X)f<&(l -X)> = 40(X- l/2). 

This moisture profile also readily satisfies the mass con- 
servation equation (5). 

Reverting to the dimensional variable (X = 2x), we obtain 
from equation (10a) 

4-L% 
w= wi+(2x-1/2)m. 

M 
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(13) 

The wet region is given by equation (lob) as 

1 DH W,K 
---<X. 
4 2&-Q, 

Following the same reasoning as before, the upper bound of 
W, is obtained as 

(N/;&t = s 04) 
M 

so that if ( Wi) z- (WI),,,,,, no dryout is possible. 

SUMMARY 

The steady-state temperature profile discussed hitherto, 
refers only to a truly steady-state condition, independent of 
the time variable. Mathematically, this is equivalent to saying 
that the poles of a Laplace transformed profile should lie 
wholly at the origin and the left-half of the imaginary axis. 

A mathematical result has been derived that is related to 
the heat and mass transfer in a homogeneous, isotropic, and 
unsaturated porous medium with impermeable boundaries. 
In the present analysis, the thermophysical properties of the 
medium are assumed to remain constant and the effect of 
gravity is neglected. This analysis establishes a method of 
predicting the existence of an ultimate dryout region and the 
steady-state moisture profile, knowing only the steady-state 
temperature profile. Equations (12) and (14) can be used to 
determine the possibility of the existence of a dryout region 
for given material properties, initial moisture concentration 
and thermal boundary conditions. The result obtained in this 
analysis is not applicable to the case of a thermal boundary 
condition which does not yield a steady-state temperature 
profile. 
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